
Separation Logic 2:

project: Annotation Assistant for Partially Specified Programs

plus some high-level observations

Hengle Jiang & John-Paul Ore

1 / 30



Recap : Separating Conjunction

P ⇤ Q

2 / 30



Recap : Frame Rule

{P}C{Q}
{P ⇤ R}C{Q ⇤ R}

Modifies(C ) \ Free(R) = ;

3 / 30



Le Menu

⇤ Annotations And Verification tools

⇤ Functions of an Annotation Assistant in Nearly Annotated Source

⇤ Some high-level observations about Separation Logic

4 / 30



Annotations

5 / 30



Annotations : Whole Program

6 / 30



7 / 30



”The future of program verification is to connect machine-verified
source programs to machine-verified compilers, and run the object
code on machine-verified hardware.” - Andrew Appel & Sandrine

Blazy, 2007

8 / 30



9 / 30



10 / 30



11 / 30



Annotation Assistance tool

Example 1: want to verify setBalance method, but do not know
the specification of deposit method.

typedef struct account{

int balance;

} Account

void setBalance(Account *a, int newBalance)

requires a->balance == _;

requires newBalance > 0;

ensures a->balance == newBalance;

{

clearBalance(a); //clear balance to 0

deposit(a, newBalance);

}

The precondition of deposit call:

{a->balance == 0 &*& newBalance > 0}

The postcondition of deposit call:

{a->balance == newBalance}

The specification of deposit method:

void deposit(Account* a, int amount)

requires a->balance == 0;

requires amount > 0;

ensures a->balance == amount;

{

}

12 / 30

John-Paul Ore


John-Paul Ore




Annotation Assistance tool

Example 2: Two methods calls on disjoint heaplets.

void setBalance(Account *a1,

Account *a2, int newBalance)

requires a1->balance == _

&*& a2->balance == _;

requires newBalance > 0;

ensures a1->balance == newBalance;

&*& a2->balance == newBalance;

{

clearBalance(a1);

deposit(a1, newBalance);

clearBalance(a2);

deposit(a2, newBalance);

}

The VCs of two deposit calls:

{a1->balance == 0 &*& newBalance > 0}

deposit(a1, newBalance);

{a1->balance == newBalance}

{a2->balance == 0 &*& newBalance > 0}

deposit(a2, newBalance);

{a2->balance == newBalance}

The specification of deposit method:

void deposit(Account* a, int amount)

requires a->balance == 0;

requires amount > 0;

ensures a->balance == amount;

{

}

13 / 30

John-Paul Ore


John-Paul Ore


John-Paul Ore


John-Paul Ore




Annotation Assistance tool

Example 3: Two methods calls on two symbolic execution paths.
The specifications inferred are dependent on the contexts.

void setBalance(Account *a, int nb)

requires a->balance == _;

ensures a->balance == nb;

{

int cb = getBalance(a);

if(nb > cb){

deposit(a, nb - cb);

}else{

withdraw(a, cb - nb);

}

}

The VCs of the deposit call:

{a->balance == cb && nb > cb}

deposit(a, nb - cb);

{a->balance == nb}

The specification of deposit method:

void deposit(Account* a, int amount)

requires a->balance == ?cb;

requires amount > 0;

ensures a->balance == cb + amount;

Similarly, the specification of withdraw method:

void withdraw(Account* a, int amount)

requires a->balance == ?cb;

requires amount >= 0;

ensures a->balance == cb - amount;

14 / 30

John-Paul Ore


John-Paul Ore


John-Paul Ore


John-Paul Ore




Annotation Assistance tool

Example 4: Same methods calls on two symbolic execution paths.
The specifications inferred are dependent on the contexts.

void setBalance(Account *a1,

Account *a2, int nb)

requires a1->balance == _;

&*& a2->balance == _;

requires nb > 0;

ensures a1->balance == nb;

&*& a2->balance == nb;

{

clearBalance(a1);

deposit(a1, nb);

int cb = getBalance(a2);

if(nb > cb){

deposit(a2, nb - cb);

}else{

withdraw(a2, cb - nb);

}

}

The VCs of first deposit calls:

{a1->balance == 0 &*& nb > 0}

deposit(a1, nb);

{a1->balance == nb}

The inferred spec from first deposit call:

void deposit(Account* a, int amount)

requires a->balance == 0;

requires amount > 0;

ensures a->balance == amount;

The inferred spec from second deposit call:

void deposit(Account* a, int amount)

requires a->balance == ?cb;

requires amount > 0;

ensures a->balance == cb + amount;

We may find the second spec and also satisfy

the first context, but not on the other

direction.

So the tool needs to output the second spec.

15 / 30

John-Paul Ore


John-Paul Ore


John-Paul Ore


John-Paul Ore


John-Paul Ore




Annotation Assistance tool

Example 5: Multiple calls on the same symbolic path.

void setBalance(Account *a, int nb)

requires a->balance == _;

requires nb > 0;

ensures a->balance == nb;

{

clearBalance(a);

deposit(a, nb);

}

I The tool cannot work in this
scenario. We may use a SMT
solver to guess the two
specifications, but it would not
be very helpful to programmers.

16 / 30

John-Paul Ore


John-Paul Ore




Annotation Assistance tool

Example 6: A trivial bug

void setBalance(Account *a, int nb)

requires a->balance == _;

requires nb > 0;

ensures a->balance == nb;

{

clearBalance(a);

}

I In the other direction, if we find
footprints mismatch between
global specification and local
specifications, we know we
cannot never verify it no matter
what local specification we
provide. The tool should detect
such trivial error.

17 / 30

John-Paul Ore




Annotation Assistance tool

Verification and Inferring through Symbolic Execution.

Use loop invariant to verify
loop, so symbolic execution
here does not have unroll
bound problem.

1. Generate symbolic
execution paths;

2. On each path verify and
shrink the specifications
by separation logic;

3. Solve as many as possible
local specifications;

4. Refine multiple
specifications of the same
method.

18 / 30



Annotation Assistance tool

Houdini, an Annotation Assistant for ESC/Java (2001)

Cormac Flanagan and K. Rustan M. Leino

I Generates a large number of candidate annotations
heuristically from program contexts;

I Uses ESC/Java to verify or refute each of these annotations.

I Di↵erent from our proposed approach.

I have not found many related works on this direction.

19 / 30



Annotation Assistance tool

Example 7: Global to local reasoning

QuickSort(a:array<int>, p:int, r:int)

requires a != null;

ensures sorted(a,p,r);

{

if(p < r){

var q := Partition(a,p,r);

QuickSort(a,p,q-1);

QuickSort(a,q+1,r);

}

}

I If we know the specification of
QuickSort, we can infer the
specification of Partition
method by separation logic.

I It is natural for programmer to
construct verification this way.

20 / 30

John-Paul Ore




Annotation Assistance tool

Example 8: Loop invariant

Partition(a:array<int>, p:int, r:int)

returns (q: int)

requires a != null;

ensures finalPosition(a,q);

{

var x: int := a[r];

var i: int := p - 1;

var j: int := p;

var swap: int;

while(j < r)

{

if(a[j] <= x){

i := i + 1;

swap := a[i];

a[i] := a[j];

a[j] := swap;

}

j := j + 1;

}

swap := a[i+1];

a[i+1] := a[r];

a[r] := swap;

q := i + 1;

}

I Can we infer loop invariant since
we have local specification of
the loop?

I To verify ”while(C) LOOP;”:
{P ^ C} ) {INV }
{INV ^ C}LOOP{INV }
{INV ^ ¬C} ) {Q}

I Can a SMT solver solve INV
just based on P and Q?

21 / 30

John-Paul Ore




Annotation Assistance tool

Loop invariants: analysis, classification, and examples(2012)
by Carlo A. Furia, Bertrand Meyer and Sergey Velder

Invariant inference relies on implementing a number of heuristics
for mutating postconditions into candidate invariants.

I
Constant relaxation: replace a constant n by a variable i,
and use i = n as part or all of the exit condition.

I
Uncoupling: replace a variable v by two, using their equality
as part or all of the exit condition.

I
Term dropping: remove a sub formula, which gives a
straightforward weakening.

I
Aging: replace a variable (more generally, an expression) by
an expression that represents the value the variable had at
previous iterations of the loop.

22 / 30



Annotation Assistance tool

Other possible approaches on static loop invariant inference

I
Abstract interpretation: is a symbolic execution of programs
over abstract domains that over-approximates the semantics
of loop iteration.
To verify ”while(C) LOOP;”:
{P ^ C} ) {INV }
{INV ^ C}LOOP{INV }
{INV ^ ¬C} ) {Q}

I
Constraint-based techniques rely on sophisticated decision
procedures over non-trivial mathematical domains to represent
concisely the semantics of loops with respect to certain
template properties.

I
Local Reasoning about While-Loops, by Thomas Tuerk
”When using separation logic, recursive implementations are
often much easier to specify and verify than the corresponding
imperative ones.”

23 / 30



Annotation Assistance tool

Goals of the tool

I Use separation logic to infer local specifications of methods on
a partially specified program.

I Infer loop invariant using some advanced techniques.

I Detect some footprint errors in partially specified program.

I Could be part of a verification tool.

24 / 30



Part 2: Some high-level observations

25 / 30



“Thus it is natural to ask whether one has to make a new
extension of separation logic for every proof one wants to make.” –

Bodil Biering, Lars Birkedal, and Noah Torp-Smith

26 / 30



27 / 30



28 / 30



29 / 30



The End.

30 / 30


