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ABSTRACT
This vision paper explores the potential to dramatically enrich
robotic simulations with insights gleaned from program analysis,
and promises to be a key tool for future robot system developers to
reduce effort and find tricky corner cases. Robotic simulations are
a critical, cost-effective tool for developing, testing, and validating
robotic software. However, most robotics simulations are inten-
tionally unaware of how the code works. Our approach leverages
two recent developments: 1) automatic program analysis that can
semantically ground program variables and predicates in physical
quantities like distance, velocity, or force; and 2) standardized simu-
lation specifications that identify both what elements are simulated
and also how they are simulated. Code-aware robotic simulation
could enable robot system developers who increasingly rely on sim-
ulation to lower the cost and risk of system development by having
access to richer simulation scenarios. We describe the approach
using a detailed, step-by-step illustration for C++ using the Robot
Operating System (ROS) and the Simulation Description Format
(SDFormat), and identify key challenges to realizing this vision.

CCS CONCEPTS
• Computer systems organization → Robotics; • Software
and its engineering → Virtual worlds training simulations;
Automated static analysis;
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1 INTRODUCTION
High-fidelity robotic simulators can reduce the cost and risk of
developing systems that interact with the world. These simulators
are governed by modeling specifications that can express a rich set
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of simulated environments and systems including obstacles, colli-
sions, temperature, lighting, fog, and the granularity of space and
time. Simulated scenarios are then composed of such models [18].
Deciding what to include and exclude in a simulation model and its
parameters is paramount to its cost-effectiveness to explore scenar-
ios of interest. While making such decisions, simulation users (often
not the code developers) are usually aware of higher-level simula-
tion goals [1, 7] but unaware of the physical elements referenced
in code, neglecting the value of code-aware robotic simulation.

As shown in Figure 1, code-aware robotic simulation (CARS)
is an automatic analysis that starts with two inputs: 1) physical
attributes referenced in code and automatically detected by program
analysis [11], such as variables that mean distances, velocities, and
forces measured in units like meters m, m·s−1, or kg·m·s−2; and, 2)
simulation specifications that encode both objects to be simulated
as well as how they are simulated. The ‘diff’ of these two inputs is
a new simulation specification that is enriched with code-aware
concerns. This new simulation specification is then used as input to
a regular simulator, but with richer specifications. CARS is enabled
by two recent developments: 1) automatic program analysis able to
identify physical attributes in code; and, 2) recent standardizations
in simulation specifications like SDFormat [5] that standardize
parameters and objects of robotic simulations, and externalize these
parameters and objects from any particular simulation software
platform, making the proposed approach more general.

Consider the simulated quadrotor in the bottom of Figure 1.
The simulation executes the quadrotor control code as a ‘black-box’
while the physics simulator provides sensor readings that change as
the quadrotor acts on the simulated world. The simulator has been
intentionally designed to be unaware of how the quadrotor’s control
code works. However, program analysis can detect thresholds in the
quadrotor control code triggering new behavior based on torque.

Figure 2 shows a snippet of actual quadrotor torque controller
code. Lines 262-263 are part of a torque controller that bounds the
commanded torque to within ±limits_.torque.x. Although this
quadrotor has several controllers, only this controller has explicit
torque limits. Automatic program analysis can determine1 that
the variable limits_.torque.x is a real-world value with units
kg·m2·s−2. The code reveals not only that torque plays a role in the
system behavior, but also that some ranges of torque values may be
worth considering (predicate in line 261). These limits can matter
when the quadrotor makes sharp turns or has a heavy payload.
The simulation specification might indicate that this simulation
does not contain sharp turns. Since sharp turns impact the system’s

1For detail on how this is done for C++ code written for the Robot Operating System
(ROS), refer to [11].
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Figure 1: Overview of code-aware robotic simulation.

behavior, to create a rich set of simulations it should automatically
be augmented with sharp turns to exercise the torque limits.

The envisioned approach consists of three key steps:
• Use program analysis to automatically detect physical code
concerns relevant to simulation.

• Capitalize on recent standardizations of simulation descrip-
tion specifications to connect simulation concerns to code
concerns.

• Use the difference between code concerns and simulation
specification concerns to generate a new, enhanced simula-
tion specification.

In the rest of this paper we discuss how robotic simulations
are used and identify some of the key weaknesses that this work
proposes to strengthen. We then give detailed examples of how
program analysis can be used together with analysis of simula-
tion specifications encoded in the simulation description format
(SDFormat). Lastly, we identify the key challenges moving forward.

2 SIMULATION AND ITS LIMITATIONS
This section provides a brief discussion of how robotic simulations
are used, and then describes some limitations in robotic simulation
and how our proposed approach aims to address these limitations.
Robotic Simulations. The considerable expense and hazard of
testing prototype hardware has spurred development of high-fidelity
robotic simulators. Fundamentally, these simulators model physical
processes and help ‘close-the-loop’ between sensing and acting,
generating new perceptions available as a result of changes in
the simulated world. In the case of robotic systems, these simula-
tion tools seek to approximate a system’s behavior in the world
by decomposing a system and its environment into manageable
pieces. These pieces interact according to detailed rules defined

for the simulation, including concerns such as: are the materials
deformable, do interactions behave differently because of tempera-
ture or pressure, are links rigid or elastic? These simulation rules or
specifications have a significant impact on the performance, fidelity,
and cost-effectiveness of the simulation, and are often tailored to
the goals of the simulation. These simulators are often used to sup-
port goal-oriented, task-based simulations such as those used to
test competitors in the DARPA Virtual Robotics Challenge [1, 7]
and for providing a ‘ghost’ version of a real robot for teleopera-
tion [10]. Human operators then specify a ‘goal configuration’ to a
planner that then generates sub-goals and control inputs to impel
the system toward the goal [16]. The value of these simulations is
in revealing real-world failures.
Simulation Limitations. Ideally and with sufficient resolution,
every failure in simulation corresponds to a real-world failure, and
every real-world failure can be anticipated through simulation [2, 9].
In practice, the game is one of cost-effectiveness. Independent of
the choice for simulation tool or model, a key common challenge is
deciding what elements to include and at what resolution to include
them. Clearly, more elements and resolution can improve simula-
tion fidelity but not necessarily performance, and it can definitely
increase the cost of developing and executing the simulation.

Although simulations exercise code, they are intentionally sep-
arated from it; missing in the simulation and the scenarios is the
connection to code. As Rodney Brooks observed, “Simulation is
doomed to succeed" [3], usually because the simulation fails to
capture relevant real-world concerns [2]. To overcome these limita-
tions,wepropose that robotic simulations need an awareness
of code concerns.

3 APPROACH
The goal of the approach is to automatically determine if physical
concerns present in code are addressed in simulation specifications,
and use this analysis to generate a richer simulation specification.

3.1 Approach Enablers
Simulation Description Standardization. To increase the gen-
eralization of the techniques we develop, we suggest leveraging
standardized simulation specification languages, such as the recent
SDFormat [5], V-Rep [14], and MuJoCo [17]. These languages de-
scribe not only the scenario but also the parameters governing how
the simulator should treat the resolution or granularity of space
and time, which is crucial when the system under simulation has
high control rates or low error tolerances.
Semantic Grounding of Program Variables and Predicates.
Our recent work and tool Phriky Units [11, 12] (Phriky) demon-
strate a technique to semantically ground program variables and
predicates to physical quantities like durations, distances, angular
velocities, torques, or forces. Phriky works on C++ programs built
with the Robot Operating System (ROS). ROS is a message passing
middleware [13], and standard message structures for sensor values
and motor commands are defined in shared libraries and commonly
re-used to promote code portability [6]. For example, the shared
library sensor_msgs defines a message BatteryState with an at-
tribute voltage. Phriky includes a mapping between attributes of
shared libraries and physical units for ROS messages. The mapping
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Figure 2: Quadrotor controller code that considers torque. source: https://git.io/vXKpl

Figure 3: Simulation concerns informed by code.

encodes that the attribute voltage in BatteryState has the phys-
ical units kg·m2·s−3·A−1. Phriky can then propagate these physical
units through the code using static analysis, to semantically ground
predicates and variables in physical units.

3.2 Step-by-Step Illustration
Figure 3 shows a detailed example of the CARS approach. The left-
hand-side of the figure shows code examples with concerns that
are relevant to the simulation, and the right-hand-side shows XML
elements from a simulation specification in SDFormat. Our first task
consists of identifying physically relevant elements for a simulation,
and encoding it in a target simulation specification language. Our
static analysis technique [11] of the code can determine, for example,
that the code on Line 14 of the left side of Figure 3 is concerned
with a BatteryState type that maps to the physical unit of volts.
An analysis of the simulation specification (a walkthrough of a
specification in XML with standardized fields) can verify that the
simulation addresses this kind of concern in Lines 116-117 of the
right-hand-side of Figure 3.

However, the automated analysis of the code will also reveal that
this system’s behavior can change based on a temperature threshold

on Line 9 of Figure 3 (recognized as a variable of a physical unit type
degrees Celsius) so this should be a candidate for inclusion in the
simulation specification. A slightly deeper data-flow analysis can
take this further by including not just the candidate type but also
the ranges of values to consider as per the predicate evaluation. As
seen in the code on Line 9 of Figure 3, a predicate over the variable
temp_info.temperature branches when the temperature exceeds
70 Celsius. Such predicate would help us instantiate simulation
values or ranges of values (e.g., less than 70, 70, more than 70) as
shown in the middle of Figure 3. This new specification element
helps engineers enrich the simulation scenarios.

A more sophisticated analysis of the code is necessary to de-
termine the space and time resolutions of the simulation, which
are usually set through global standard parameters. For example,
a robotic surgeon might require smaller resolution than a mining
electric rope shovel [4], yet guidance for selecting that resolution is
often disconnected from the code. To detect such resolution values
we will start by searching for constants either in configuration,
header, or launch files, and analyzing whether those constants are
compared (directly or through propagation) with physical units of
distance or duration base types. As an example, the code on Line

https://git.io/vXKpl
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1 of Figure 3 shows a variable goal_threshold_, with physical
units in meters, appearing within a predicate that determines if
the system position is sufficiently close to goal. The magnitude
of goal_threshold_ determines a required lower bound for the
spatial resolution or granularity of the simulation, one that serves
a potential value of resolution to consider for this simulation. The
code analysis determines that goal_threshold_ is 0.02m, and that
the simulation specification should have at least this accuracy in
spatial resolution, as shown in the enriched Simulation Specifica-
tion’ in the middle of Figure 3.

This example shows how semantic program analysis can re-
veal concerns that can be automatically compared with simulation
specifications to identify ways to improve robotic simulations.

4 MOVING FORWARD
Our preliminary examination shows that system code often con-
tains clues about elements of the environment that may impact
the system behavior and hence are likely to be relevant to include
in simulation environments. However, moving forward there are
several challenges.

One challenge of CARS is correctly matching code concerns with
corresponding elements in the simulation specification. Although
an analysis of the code might correctly identify that battery voltage
is a concern, there might be multiple matching elements in the
simulation specification. It should be possible to start with an over-
approximation of potential concerns and to flag ambiguities for
further review.

Extending CARS beyond C++ or ROS is a challenge because it
requires semantically grounding variables and predicates, either
with annotations or language support. Other languages like Java
have been grounded to physical units with extensive programmer
annotations [19]. Beyond ROS, Simulink blocks can be linked to
physical units with type systems like SimCheck [15], but this still
incurs an annotation burden. Variables can also be grounded with
specialized languages like F# that has unit support as envisioned
by Kennedy [8]. Regardless of the language or robot architecture,
CARS analysis proceeds the same after the variables and predicates
are grounded.

Managing the complexity of the combinatorial space of code
concerns might also be a challenge. In a large codebase, there might
be many combinations of simulation parameters inferred by the
code, requiring a separate simulation for each combination. Effi-
ciently managing this complexity might require new heuristics for
ordering simulations by a prioritization scheme.

Another challenge is determining how andwhen to deploy CARS
in a systems’ life-cycle. We believe CARS will not displace current
techniques of robotic simulation that are not code-aware, but rather
that CARS will augment and enrich simulation techniques, and that
both will be a critical part of creating and testing robotic systems.

In summary, this vision paper explores how physical attributes
in code can enrich simulation scenarios and parameters, so that
system designers can better investigate the interplay of robotic
systems and potential environments. If successful, this approach
could dramatically improve the way robotic systems are explored
through simulation.
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